\qquad

Topics in Chapter

- Features of common stock
- Valuing common stock
\qquad
- Dividend growth model
- Free cash flow valuation model \qquad
- Market multiples
- Preferred stock
\qquad
\qquad

Stock value = PV of dividends discounted at required return

$\hat{P}_{0}=\frac{D_{1}}{\left(1+r_{s}\right)^{1}}+\frac{D_{2}}{\left(1+r_{s}\right)^{2}}+\frac{D_{3}}{\left(1+r_{s}\right)^{3}}+\ldots+\frac{D_{\infty}}{\left(1+r_{s}\right)^{\infty}}$
Conceptually correct, but how do you find the present value of an infinite stream?

Different Approaches for Valuing Common Stock

- Dividend growth model
- Constant growth stocks
- Nonconstant growth stocks
- Free cash flow model
- Using the multiples of comparable firms

Contact Charles Hodges

- Email D2L Email or chodges@siu.edu
- Chat Sessions
- Skype (bufordshighway), LinkedIn and Facebook (Charles Hodges).
- Office Phone (678)839-4816 and Cell Phone (770)301-8648, target is under 24 hours

Common Stock: Owners,

 Directors, and Managers- Represents ownership.
- Ownership implies control.
- Stockholders elect directors.
- Directors hire management.
- Since managers are "agents" of shareholders, their goal should be: Maximize stock price.

Classified Stock

- Classified stock has special provisions.
- Could classify existing stock as founders' shares, with voting rights but dividend restrictions.
- New shares might be called "Class A" shares, with voting restrictions but full dividend rights.

Tracking Stock

- The dividends of tracking stock are tied to a particular division, rather than the company as a whole.
- Investors can separately value the divisions.
- Its easier to compensate division managers with the tracking stock.
- But tracking stock usually has no voting rights, and the financial disclosure for the division is not as regulated as for the company. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Stock value $=$ PV of dividends discounted at required return

$$
\hat{P}_{0}=\frac{D_{1}}{\left(1+r_{s}\right)^{1}}+\frac{D_{2}}{\left(1+r_{s}\right)^{2}}+\frac{D_{3}}{\left(1+r_{s}\right)^{3}}+\ldots+\frac{D_{\infty}}{\left(1+r_{s}\right)^{)^{0}}}
$$

Conceptually correct, but how do you find the present value of an infinite stream?

Suppose dividends are expected to grow at a constant rate, g, forever.

$$
\begin{aligned}
D_{1} & =D_{0}(1+g)^{1} \\
D_{2} & =D_{0}(1+g)^{2} \\
D_{t} & =D_{0}(1+g)^{t}
\end{aligned}
$$

\qquad
What is the present value of a constant growth D_{t} when discounted at the stock's required return, r_{s} ? See next slide.

- $\mathrm{PV}=\frac{\mathrm{D}_{\mathrm{t}}}{\left(1+\mathrm{r}_{\mathrm{s}}\right)^{\mathrm{t}}}=\frac{\mathrm{D}_{0}(1+\mathrm{g})^{\mathrm{t}}}{\left(1+\mathrm{r}_{\mathrm{s}} \mathrm{t}^{\mathrm{t}}\right.}=\mathrm{D}_{0}\left[\frac{1+\mathrm{g}}{1+\mathrm{r}_{\mathrm{s}}}\right]^{\mathrm{t}}$
\qquad
- What happens to $\left[\frac{1+\mathrm{g}}{1+\mathrm{r}_{\mathrm{s}}}\right]^{\mathrm{t}}$ as t gets bigger?
- If $\mathrm{g}<\mathrm{r}_{\mathrm{s}}$: Then $\left[\frac{1+\mathrm{g}}{1+\mathrm{r}_{\mathrm{s}}}\right]^{\mathrm{t}}<1$.
- So D_{t} approaches zero as t gets large.

Constant Dividend Growth:
 PV of D_{t} if $g<r_{s}$

Constant Dividend Growth:

Cumulative Sum of PV of D_{t} if $g<r_{s}$

$$
\widehat{\mathrm{P}}_{0}=\sum_{\mathrm{t}=1}^{\infty} \mathrm{D}_{0}\left[\frac{1+\mathrm{g}}{1+\mathrm{r}_{\mathrm{s}}}\right]^{\mathrm{t}}
$$

What happens to $\widehat{\mathrm{P}}_{0}$ as t gets bigger? Consider this:

t	1	2	3	4	5
$(1 / 2)^{t}$	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$	$1 / 32$
$\Sigma(1 / 2)^{t}$	$1 / 2$	$3 / 4$	$7 / 8$	$15 / 16$	Boring

This sum converges to 1 . Similarly, $\widehat{\mathrm{P}}_{0}$ converges. See next slide.

> What happens if $g>r_{s}$?
> $\hat{P}_{0}=\frac{D_{0}(1+g)^{1}}{\left(1+r_{s}\right)^{1}}+\frac{D_{0}(1+g)^{2}}{\left(1+r_{s}\right)^{2}}+\ldots+\frac{D_{0}\left(1+r_{s}\right)^{\infty}}{\left(1+r_{s}\right)^{\infty}}$
> If $g>r_{s}$ then $\frac{(1+g)^{t}}{\left(1+r_{s}\right)^{t}}>1$, and $\hat{P}_{0}=\infty$

So g must be less than r_{s} for the constant growth model to be applicable!!

Contact Charles Hodges

- Email D2L Email or chodges@siu.edu
- Chat Sessions
- Skype (bufordshighway), LinkedIn and Facebook (Charles Hodges).
- Office Phone (678)839-4816 and Cell Phone (770)301-8648, target is under 24 hours

Constant Dividend Growth Model $\left(\mathrm{g}<\mathrm{r}_{\mathrm{s}}\right)$

- If g is constant and less than r_{s}, then $\mathrm{D}_{0}\left[\frac{1+\mathrm{g}}{1+\mathrm{r}_{\mathrm{s}}}\right]^{\mathrm{t}}$ converges to:

$$
\widehat{P}_{0}=\frac{D_{0}(1+g)}{r_{s}-g}=\frac{D_{1}}{r_{s}-g}
$$

Required rate of return: beta $=1.2$,
$r_{R F}=7 \%$, and $R_{M}=5 \%$.

Use the SML to calculate r_{s} :

$$
\begin{aligned}
r_{\mathrm{s}} & =\mathrm{r}_{\mathrm{RF}}+\left(\mathrm{RP} \mathrm{R}_{\mathrm{M}}\right) \mathrm{b}_{\text {firm }} \\
& =7 \%+(5 \%)(1.2) \\
& =13 \% .
\end{aligned}
$$

Estimated Intrinsic Stock Value: \qquad
$D_{0}=\$ 2.00, r_{s}=13 \%, g=6 \%$
$\mathrm{D}_{1}=\mathrm{D}_{0}(1+\mathrm{g})$
$\mathrm{D}_{1}=\$ 2.00(1.06)=\$ 2.12$
$\widehat{\mathrm{P}}_{0}=\frac{\mathrm{D}_{0}(1+\mathrm{g})}{\mathrm{r}_{\mathrm{s}}-\mathrm{g}}=\frac{\mathrm{D}_{1}}{\mathrm{r}_{\mathrm{s}}-\mathrm{g}}$
$\hat{\mathrm{P}}_{0}=\frac{\$ 2.12}{0.13-0.06}=\$ 30.29$

23

Expected Stock Price in 1 Year

- In general: $\widehat{\mathrm{P}}_{\mathrm{t}}=\frac{\mathrm{D}_{\mathrm{t}+1}}{\mathrm{r}_{\mathrm{s}}-\mathrm{g}}$
- $D_{1}=D_{0}(1+g)$
- $D_{1}=\$ 2.12(1.06)=\$ 2.2472$
- $\widehat{P}_{0}=\frac{D_{1}}{r_{s}-\mathrm{g}}$
- $\hat{\mathrm{P}}_{0}=\frac{\$ 2.2472}{0.13-0.06}=\mathbf{\$ 3 2 . 1 0}$

Expected Dividend Yield and Capital Gains Yield (Year 1)

Dividend yield $=\frac{D_{1}}{P_{0}}=\frac{\$ 2.12}{\$ 30.29}=7.0 \%$.
\qquad

CG Yield $=\frac{\hat{P}_{1}-P_{0}}{P_{0}}=\frac{\$ 32.10-\$ 30.29}{\$ 30.29}$
$=6.0 \%$.

Total Year 1 Return

- Total return $=$ Dividend yield + Capital gains yield.
- Total return $=7 \%+6 \%=13 \%$.
- Total return $=13 \%=r_{s}$.
- For constant growth stock:
- Capital gains yield $=6 \%=g$.

Is the stock price based on short-term growth?

The current stock price is $\$ 46.66$.
The PV of dividends beyond Year 3 is: \qquad
$\hat{P}_{3} /\left(1+r_{s}\right)^{3}=\$ 39.22$ (see slide 22) \qquad
The percentage of stock price due to "long-term" dividends is:

$$
\frac{\$ 39.22}{\$ 46.66}=84.1 \%
$$

Intrinsic Stock Value vs.
 Quarterly Earnings

- If most of a stock's value is due to long-term cash flows, why do so many managers focus on quarterly earnings?
- Changes in quarterly earnings can signal changes future in cash flows. This would affect the current stock price.
- Managers often have bonuses tied to quarterly earnings, so they have incentive to manage earnings.

Why are stock prices volatile?

$$
\hat{P}_{0}=\frac{D_{1}}{r_{s}-g}
$$

- r_{s} could change: $r_{s}=r_{R F}+\left(R P_{M}\right) b_{i}$
- Interest rates ($r_{R F}$) could change
- Risk aversion $\left(\mathrm{RP}_{\mathrm{M}}\right)$ could change
- Company risk (b_{i}) could change
- g could change.

Estimated Stock Price:

Changes in r_{s} and g

Growth Rate: R				
	11.0%	12.0%	13.0%	14.0%
5%	$\$ 35.00$	$\$ 30.00$	$\$ 26.25$	$\$ 23.33$
621.00				
7%	$\$ 42.40$	$\$ 35.33$	$\$ 30.29$	$\$ 26.50$
	$\$ 23.56$			

- Small changes in g or r_{s} cause large changes in the estimated price.

Are volatile stock prices

 consistent with rational pricing?- Small changes in expected g and r_{s} cause large changes in stock prices.
- As new information arrives, investors continually update their estimates of g and r_{s}.
- If stock prices aren't volatile, then this means there isn't a good flow of information.

Rearrange model to rate of return form:

$$
\hat{P}_{0}=\frac{D_{1}}{r_{s}-g} \text { to } \hat{r}_{s}=\frac{D_{1}}{P_{0}}+g
$$

Then, $\hat{\mathrm{r}}_{\mathrm{s}}=\$ 2.12 / \$ 30.29+0.06$

$$
=0.07+0.06=13 \%
$$

Contact Charles Hodges

- Email D2L Email or chodges@siu.edu
- Chat Sessions
- Skype (bufordshighway), LinkedIn and \qquad Facebook (Charles Hodges).
- Office Phone (678)839-4816 and Cell \qquad Phone (770)301-8648, target is under 24 hours \qquad

Nonconstant Growth Stock

- Nonconstant growth of 30% for Year 0 to Year 1, 25\% for Year 1 to Year 2, \qquad 15% for Year 2 to Year 3, and then long-run constant $\mathrm{g}=6 \%$.
- Can no longer use constant growth model.
- However, growth becomes constant after 3 years.

Steps to Estimate Current Stock Value

- Forecast dividends for nonconstant period, which ends at horizon date after which growth is constant at g_{L} plus one constant growth dividend.
- Find horizon value, which is PV of dividends beyond horizon date discounted back to horizon date (Assume you sell stock as soon as growth is constant)
- Horizon value $=\widehat{\mathrm{P}}_{\mathrm{t}}=\frac{\mathrm{D}_{\mathrm{t}}\left(1+\mathrm{g}_{\mathrm{L}}\right)}{\mathrm{r}_{\mathrm{s}}-\mathrm{g}_{\mathrm{L}}}=\frac{\mathrm{D}_{\mathrm{t}+1}}{\mathrm{r}_{\mathrm{s}}-\mathrm{g}_{\mathrm{L}}}$
- Compute the NPV of non-constant dividends and horizon value.

Example of Estimating Current \qquad
Stock Value ($D_{0}=\$ 2.00, r_{s}=13 \%$)

Expected Dividend Yield and Capital Gains Yield $(\mathrm{t}=0)$

At $\mathrm{t}=0$:
Dividend yield $=\frac{D_{1}}{P_{0}}=\frac{\$ 2.60}{\$ 46.66}=5.6 \%$

CG Yield $=13.0 \%-5.6 \%=7.4 \%$.
(More...)

Expected Dividend Yield and
Capital Gains Yield (after $t=3$)

- During nonconstant growth, dividend yield and capital gains yield are not constant.
- If current growth is greater than g , current capital gains yield is greater than g .
- After $t=3, g=$ constant $=6 \%$, so the capital gains yield $=6 \%$.
- Because $r_{s}=13 \%$, after $t=3$ dividend yield $=13 \%-6 \%=7 \%$.

Contact Charles Hodges

- Email D2L Email or chodges@siu.edu
- Chat Sessions
- Skype (bufordshighway), LinkedIn and Facebook (Charles Hodges).
- Office Phone (678)839-4816 and Cell Phone (770)301-8648, target is under 24 hours

The Free Cash Flow Valuation Model: FCF and WACC

- Free cash flow (FCF) is:
- The cash flow available for distribution to all of a company's investors.
- Generated by a company's operations.
- The weighted average cost of capital (WACC) is:
- The overall rate of return required by all of the company's investors.

\qquad

Sources of Value

- Value of operations
- Nonoperating assets
- Marketable securities
- Ownership of non-controlling interest in another company
- Value of nonoperating assets usually is very close to figure that is reported on balance sheets.

Claims on Corporate Value

- Debtholders have first claim.
- Preferred stockholders have the next claim.
- Any remaining value belongs to stockholders.

Data for FCF Valuation

- $\mathrm{FCF}_{0}=\$ 24$ million
- WACC = 11% \qquad
- FCF is expected to grow at a constant rate of $\mathrm{g}=5 \%$ \qquad
- Marketable securities = $\$ 100$ million
- Debt = \$200 million \qquad
- Preferred stock = \$50 million
- Number of shares $=\mathrm{n}=10$ million \qquad

Constant Growth Formula for Value of Operations

- If FCF are expected to grow at a constant rate of g :
\qquad
\qquad $V_{o p}=\frac{\mathrm{FCF}_{1}}{(\mathrm{WACC}-\mathrm{g})}$ $=\frac{F C F_{0}(1+g)}{(W A C C-g)}$ Ein undo oringat oxap tit ruse as

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Estimated Intrinsic Value of Equity ($\mathrm{V}_{\text {Equity }}$)	
$\mathrm{V}_{\text {operations }}$	\$420.00
+ ST Inv.	100.00
$\mathrm{V}_{\text {Total }}$	\$520.00
-Debt	200.00
- Preferred Stk.	50.00
$\mathrm{V}_{\text {Equity }}$	\$270.00

Estimated Intrinsic Stock Price per Share, $\widehat{\mathrm{P}}_{0}$	
$\mathrm{V}_{\text {operations }}$	\$420.00
+ ST Inv.	100.00
$\mathrm{V}_{\text {Total }}$	\$520.00
-Debt	200.00
- Preferred Stk.	50.00
$\mathrm{V}_{\text {Equity }}$	\$270.00
$\div \mathrm{n}$	10
$\widehat{\mathrm{P}}_{0}$	\$27.00

\qquad
\qquad
\qquad
\qquad
\qquad

Expansion Plan: Nonconstant Growth

- Finance expansion financed by owners.
- Projected free cash flows (FCF): \qquad
- Year 1 FCF = - $\$ 10$ million.
- Year 2 FCF = $\$ 20$ million.
- Year 3 FCF = $\$ 35$ million
- FCF grows at constant rate of 5\% after year 3 .
- No change in WACC, marketable securities, debt, preferred stock, or number of shares of stock.

Horizon Value

- Free cash flows are forecast for three years in this example, so the forecast horizon is three years.
- Growth in free cash flows is not constant during the forecast, so we can't use the constant growth formula to find the value of operations at time 0. \qquad

\qquad

Horizon Value Formula

$$
\mathrm{HV}=\mathrm{V}_{\text {op at time } t}=\frac{\mathrm{FCF}_{\mathrm{t}}(1+\mathrm{g})}{(\mathrm{WACC}-\mathrm{g})}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

- Horizon value is also called terminal value, or continuing value.

Estimated Intrinsic Stock Price per Share, $\widehat{\mathrm{P}}_{0}$	
$\mathrm{V}_{\text {operations }}$	\$480.67
+ ST Inv.	100.00
$\mathrm{V}_{\text {Total }}$	\$580.67
-Debt	200.00
- Preferred Stk.	50.00
$V_{\text {Equity }}$	\$330.67
$\pm \mathrm{n}$	10
$\widehat{\mathrm{P}}_{0}$	\$33.07

Comparing the FCF Model and Dividend Growth Model

- Can apply FCF model in more situations: \qquad
- Privately held companies
- Divisions of companies \qquad
- Companies that pay zero (or very low) dividends \qquad
- FCF model requires forecasted financial statements to estimate FCF \qquad

Using Stock Price Multiples to Estimate Stock Price

- Analysts often use the P/E multiple (the price per share divided by the earnings per share).
- Example: \qquad
- Estimate the average P/E ratio of comparable firms. This is the P/E multiple.
- Multiply this average P/E ratio by the expected earnings of the company to estimate its stock price.
\qquad
\qquad
O2ni

Using Entity Multiples

- The entity value (V) is:
- the market value of equity (\# shares of stock multiplied by the price per share)
- plus the value of debt.
- Pick a measure, such as EBITDA, Sales, Customers, Eyeballs, etc.
- Calculate the average entity ratio for a sample of comparable firms. For example,
- V/EBITDA
- V/Customers

Using Entity Multiples (Continued)

- Find the entity value of the firm in question. For example,
- Multiply the firm's sales by the V/Sales multiple.
- Multiply the firm's \# of customers by the V/Customers ratio
\qquad
- The result is the firm's total value.
- Subtract the firm's debt to get the total value of its equity.
- Divide by the number of shares to calculate the price per share. \qquad

Problems with Market Multiple Methods

- It is often hard to find comparable firms.
- The average ratio for the sample of comparable firms often has a wide range.
- For example, the average P/E ratio might be 20, but the range could be from 10 to 50 . How do you know whether your firm should be compared to the low, average, or high performers?
- Hybrid security.
- Similar to bonds in that preferred stockholders receive a fixed dividend which must be paid before dividends can be paid on common stock.
- However, unlike bonds, preferred stock dividends can be omitted without fear of pushing the firm into bankruptcy.

Contact Charles Hodges

- Email D2L Email or chodges@siu.edu
- Chat Sessions
- Skype (bufordshighway), LinkedIn and \qquad Facebook (Charles Hodges).
- Office Phone (678)839-4816 and Cell \qquad Phone (770)301-8648, target is under 24 hours \qquad

