Chapter 5

Bonds, Bond Valuation, and Interest Rates

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A bond is a debt instrument

\qquad issued by governments or corporations to raise money

- 3rd most important Finance concept Inverse relationship between Prices and Yields
\qquad
\qquad
- Rate up implies price down
\qquad
\qquad
\qquad

Bond Basics

When governments or companies issue bonds, they promise to make a series of interest payments and then repay the debt.

- Face Value = Par Value = Principal Value = \$1000 = Payment at the Maturity of the Bond (FV)
- Maturity = Number of Coupons Remaining (N) \qquad
- Coupon Rate (Annual Interest Payment as a percent of Face Value (\$1000)).
- Allow us to compute the Coupon (PMT)
\qquad
- Interest Rate = Yield to Maturity (I/YR)
- Price = Value (if markets are efficient) (PV)
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$r_{d}=r^{*}+I P+D R P+L P+$ MRP.

[^0]\qquad
\qquad
\qquad
\qquad

Contact Charles Hodges

- Email D2L Email or chodges@siu.edu
- Chat Sessions
- Skype (bufordshighway), LinkedIn and \qquad Facebook (Charles Hodges).
- Office Phone (678)839-4816 and Cell \qquad Phone (770)301-8648, target is under 24 hours \qquad

Key Features of a Bond

- Par value: Face amount; paid at maturity. Assume \$1,000.
- Coupon interest rate: Stated interest rate. Multiply by par value to get dollars of interest. Generally fixed.
(More...)

Key Features of a Bond

- Maturity: Years until bond must be repaid. Declines.
- Issue date: Date when bond was issued.
- Default risk: Risk that issuer will not make interest or principal payments.

Call Provision

- Issuer can refund if rates decline. That helps the issuer but hurts the investor. \qquad
- Therefore, borrowers are willing to pay more, and lenders require more, on callable bonds.
- Most bonds have a deferred call and a declining call premium.

What's a sinking fund?

- Provision to pay off a loan over its life rather than all at maturity.
- Similar to amortization on a term loan.
- Reduces risk to investor, shortens average maturity.
- But not good for investors if rates decline after issuance.

Sinking funds are generally handled in 2 ways

- Call $x \%$ at par per year for sinking fund purposes.
- Call if r_{d} is below the coupon rate and bond sells at a premium.
- Buy bonds on open market.
- Use open market purchase if r_{d} is above coupon rate and bond sells at a discount.

| Value of a 10-year, 10%
 coupon bond if $r_{d}=10 \%$ |
| :--- | :--- |

```
The bond consists of a 10-year, 10%
    annuity of $100/year plus a $1,000 lump
    sum at t = 10: annuity of \(\$ 100 /\) year plus a \(\$ 1,000\) lump sum at t = 10:
\[
\begin{array}{llr}
\text { PV annuity } & =\$ 614.46 \\
\text { PV maturity value } & =385.54 \\
\text { Value of bond } & =\$ 1,000.00
\end{array}
\]
```


\qquad
\qquad
\qquad
\qquad
\qquad

What would happen if expected inflation rose by 3%, causing $r=13 \%$?

INPUTS	10	13		100	00		100	
	N	IIYR	PV		MT			
OUTPUT			-837.21					

When r_{d} rises, above the coupon rate, the bond's value falls below par, so it sells at a discount.

What would happen if inflation fell, and r_{d} declined to 7% ?

INPUTS	10	7		100	1000
	N	I/YR	PV	PMT	FV
OUTPUT			1,210.		

If coupon rate $>r_{d}$, price rises above par, and bond sells at a premium.

Bond Value (\$) vs. Years remaining to Maturity

- Suppose the bond was issued 20 years ago and now has 10 years to maturity. What would happen to its value over time if the required rate of return remained at 10%, or at 13%, or at 7% ?
- See next slide.

Bond Value (\$) vs. Years remaining to Maturity

- At maturity, the value of any bond must equal its par value.
\qquad

The value of a premium bond would decrease to $\$ 1,000$.

- The value of a discount bond would increase to $\$ 1,000$.
- A par bond stays at $\$ 1,000$ if r_{d} remains constant.

\qquad
\qquad
\qquad
\qquad
\qquad

What's "yield to maturity"?

- YTM is the rate of return earned on a bond held to maturity. Also called "promised yield."
- It assumes the bond will not default.

$V_{B}=\frac{\text { INT }}{\left(1+r_{\mathrm{d}}\right)^{1}}+\cdots+\frac{\text { INT }}{\left(1+r_{\mathrm{d}}\right)^{N}}+\frac{\text { M }}{\left(1+r_{\mathrm{d}}\right)^{N}}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What's "yield to maturity"?

- If coupon rate $<\mathrm{r}_{\mathrm{d}}$, bond sells at a discount. \qquad
- If coupon rate $=r_{d}$, bond sells at its par value. \qquad
- If coupon rate $>r_{d}$, bond sells at a premium. \qquad
- If r_{d} rises, price falls.
- Price = par at maturity. \qquad

Find YTM if price were \qquad \$1,134.20.

INPUTS 10		-1134.2	90	1000
N	I/YR	PV	PMT	FV
OUTPUT	7.08			

Sells at a premium. Because coupon $=9 \%>r_{d}=7.08 \%$, bond's value > par.

Contact Charles Hodges

- Email D2L Email or chodges@siu.edu
- Chat Sessions
- Skype (bufordshighway), LinkedIn and \qquad Facebook (Charles Hodges).
- Office Phone (678)839-4816 and Cell \qquad Phone (770)301-8648, target is under 24 hours \qquad

Definitions
Current yield $=\frac{\text { Annual coupon pmt }}{\text { Current price }}$
Capital gains yield $=\frac{\text { Change in price }}{\text { Beginning price }}$

Exp total
return
:---:
Curr yld
:---:
gains yld

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9\% coupon, 10-year bond, $\mathrm{P}=$ $\$ 887$, and YTM $=10.91 \%$
$\begin{aligned} \text { Current yield } & =\frac{\$ 90}{\$ 887} \\ & =0.1015=10.15 \% .\end{aligned}$
\qquad
\qquad
\qquad
\qquad
\qquad

YTM = Current yield + Capital gains yield.

Cap gains yield $=$ YTM - Current yield

$$
\begin{aligned}
& =10.91 \%-10.15 \% \\
& =0.76 \% .
\end{aligned}
$$

Could also find values in Years 1 and 2, get difference, and divide by value in Year 1. Same answer.

Semiannual Bonds

1. Multiply years by 2 to get periods $=2 \mathrm{~N}$.
2. Divide nominal rate by 2 to get periodic rate $=r_{\mathrm{d}} / 2$.
3. Divide annual INT by 2 to get PMT = INT/2.
$\begin{array}{lllllll}\text { INPUTS } & 2 N & r_{d} / 2 & \text { OK } & \text { INT/2 } & \text { OK }\end{array}$
output

32

\qquad

Callable Bonds and Yield to

 Call- A 10 -year, 10% semiannual coupon, $\$ 1,000$ par value bond is selling for $\$ 1,135.90$ with an 8% yield to maturity. It can be called after 5 years at $\$ 1,050$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

If you bought bonds, would you be more likely to earn YTM or YTC?

- Coupon rate $=10 \%$ vs. $\mathrm{YTC}=\mathrm{r}_{\mathrm{d}}=$ 7.53\%. Could raise money by selling
\qquad new bonds which pay 7.53%.
- Could thus replace bonds which pay \$100/year with bonds that pay only \$75.30/year.
- Investors should expect a call, hence YTC $=7.5 \%$, not YTM $=8 \%$.
\qquad

If you bought bonds, would you be \qquad more likely to earn YTM or YTC?

- In general, if a bond sells at a premium, then coupon > r_{d}, so a call is likely. \qquad
- So, expect to earn:
- YTC on premium bonds.
- YTM on par \& discount bonds.

Contact Charles Hodges

- Email D2L Email or chodges@siu.edu
- Chat Sessions
- Skype (bufordshighway), LinkedIn and \qquad Facebook (Charles Hodges).
- Office Phone (678)839-4816 and Cell \qquad Phone (770)301-8648, target is under 24 hours \qquad

What is the nominal risk-free rate?

- $\mathrm{r}_{\mathrm{RF}}=\left(1+\mathrm{r}^{*}\right)(1+\mathrm{IP})-1$
$=r^{*}+I P+\left(r^{*} x I P\right)$
$\approx r^{*}+$ IP. (Because $r^{*} x$ IP is small)
- $r_{R F}=$ Rate on Treasury securities.

Estimating IP

- Treasury Inflation-Protected Securities (TIPS) are indexed to inflation.
- The IP for a particular length maturity can be approximated as the difference between the yield on a non-indexed Treasury security of that maturity minus the yield on a TIPS of that maturity.

Bond Spreads, the DRP, and the LP

- A "bond spread" is often calculated as the difference between a corporate bond's yield and a Treasury security's yield of the same maturity. Therefore:
- Spread = DRP + LP.
- Bond's of large, strong companies often have very small LPs. Bond's of small companies often have LPs as high as 2%.

Bond Ratings	\% defaulting within:	
S\&P and Fitch Moody's	1 yr .	5 yrs .
Investment grade bonds:		
AAA Aaa	0.00	0.00
AA Aa	0.03	0.17
A A	0.09	0.74
BBB Baa	0.23	2.54
Junk bonds:		
BB Ba	1.17	6.91
B B	2.14	9.28
CCC Caa	24.47	35.23
Source: Fitch Ratings		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Ratings Median Ratios		
	Interest coverage	Return on capital	Debt to capital
AAA	23.8	27.6\%	12.4\%
AA	19.5	27.0\%	28.3\%
A	8.0	17.5\%	37.5\%
BBB	4.7	13.4\%	42.5\%
BB	2.5	11.3\%	53.7\%
B	1.2	8.7\%	75.9\%
CCC	0.4	3.2\%	113.5\%
\%onc	$\begin{aligned} & \text { ights Reserved. May not } \\ & \text { with a certain product or s } \end{aligned}$, caticumes

\qquad
(S\&P)

Other Factors that Affect Bond
Ratings
. Other factors
- Earnings stability
- Regulatory environment
- Potential product liability
- Accounting policies

What is reinvestment rate risk?

- The risk that CFs will have to be reinvested in the future at lower rates, reducing income.
- Illustration: Suppose you just won $\$ 500,000$ playing the lottery. You'll invest the money and live off the interest. You buy a 1 -year bond with a YTM of 10%. \qquad

What is reinvestment rate risk?

- Year 1 income $=\$ 50,000$. At year-end get back $\$ 500,000$ to reinvest.
- If rates fall to 3%, income will drop from $\$ 50,000$ to $\$ 15,000$. Had you bought 30 -year bonds, income would have remained constant.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Maturity Risk Premium

- Long-term bonds: High interest rate risk, low reinvestment rate risk.
- Short-term bonds: Low interest rate risk, high reinvestment rate risk.
- Nothing is riskless!
- Yields on longer term bonds usually are greater than on shorter term bonds, so the MRP is more affected by interest rate risk than by reinvestment rate risk.

Term Structure Yield Curve

- Term structure of interest rates: the relationship between interest rates (or \qquad yields) and maturities.
- A graph of the term structure is called the yield curve.
\qquad

Bankruptcy

- Two main chapters of Federal Bankruptcy Act:
- Chapter 11, Reorganization
- Chapter 7, Liquidation
- Typically, company wants Chapter 11, creditors may prefer Chapter 7.
\qquad

Bankruptcy

- Company must demonstrate in its reorganization plan that it is "worth more alive than dead."
- Otherwise, judge will order liquidation \qquad under Chapter 7.

If the company is liquidated, here's the payment priority:

- Past due property taxes
- Secured creditors from sales of secured assets.
- Trustee's costs
- Expenses incurred after bankruptcy filing
- Wages and unpaid benefit contributions, subject to limits
- Unsecured customer deposits, subject to limits
- Taxes
- Unfunded pension liabilities
- Unsecured creditors
- Preferred stock
- Common stock

Contact Charles Hodges

- Email D2L Email or chodges@siu.edu
- Chat Sessions
- Skype (bufordshighway), LinkedIn and
\qquad Facebook (Charles Hodges).
- Office Phone (678)839-4816 and Cell Phone (770)301-8648, target is under 24 hours
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Here:
 $r_{d}=$ Required rate of return on a debt security.
 $r^{*}=$ Real risk-free rate.
 IP = Inflation premium.
 DRP = Default risk premium.
 $\mathrm{LP}=$ Liquidity premium.
 MRP = Maturity risk premium.

